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Abstract

A simple statistical segmental approach to speech pattern modelling, based
on segmental hidden Markov models, is proposed which addresses some of
the limitations of conventional hidden Markov model based methods. The
most important features of the new approach are the use of an underlying
semi-Markov process to model speech at the segment level, rather than time-
synchronous frame level, and to enable improved segment duration modelling,
and the development of a segment model in which separate statistical processes
are used to characterise extra-state and intra-state variability, thus making
the temporal independence assumption more acceptable within a segment.
A basic mathematical analysis of gaussian segmental hidden Markov models
is presented and model parameter reestimation equations are derived. The
relationship between the new type of model and variable frame rate analysis
and conventional gaussian mixture based hidden Markov models is exposed.

DI•CQtTALI " *'•-,+•D 4 Aooesslon For

NTIS Gt
DTIC TAB

Copyright © Crown Copyright, 1992. Unannounced []
Just! flcatlon

By_

LDI A'Tl'but ton/
Avatlability Codes

Diet ISpooal&&



INTENTIONALLY BLANK



Contents

1 Executive Summary 3

2 Introduction 4

3 Hidden Semi-Markov Models 6

3.1 Hidden Markov processes ........................... 6

3.2 Hidden semi-Markov processes ........................ 7

3.3 Advantages of Hidden Semi-Markov Models ................ 8

4 Segmental Hidden Markov Models 8

4.1 Definition of the model ............................ 9

5 Gaussian Segmental HSMMs 10

5.1 A simple example ............................... 10

5.2 Mathematical analysis of Gaussian Segmental HMMs ........... 12

5.2.1 Analysis of the State Model ..................... 12

5.2.2 Analysis of Multi-State Models ...... ................... 13

6 Relationship with Variable Frame Rate Analysis 14

6.1 Variable Rate Analysis ........ ............................ 15

6.2 Improvements to the basic VFR algorithm ................. 15

6.3 Interpretation of VFR analysis in terms of segmental HMMs .......... 16

7 Relationship with multi-modal gaussian mixture densities 17

8 Parameter Re-estimation for Segmental HMMs 18

8.1 Derivation of the Reestimations Formulae ........................ 19

8.2 Remarks on the derivation of the reestimation formulae .............. 24

9 Conclusions 24

A Proof of the concavity of d(M,M) 27



B Q(M,M) -- -oo as MA1 approaches the boundary of the parameter space 29

B.1 Proof .............................................. 29

B.2 Remarks ............................................ 31

2



1 Executive Summary

Potential military applications of advanced speech technology are particularly demand-
ing in terms of acoustic environment, channel characteristics, speaker variability and
vocabulary flexibility. As higher-level techniques emerge which address these issues,
ever-increasing demands are placed on recogniser performance at the acoustic-phonetic
level. This is the fundamental stage in the recognition process where speech patterns de-
rived from physical measurements are interpreted in terms of symbols which describe the
basic sounds of the language. Performance at this level clearly depends on the quality
of the speech models which are used.

The most successful automatic speech recognition systems use a statistical formalism,
hidden Markov modelling, to model speech patterns, together with powerful mathemat-
ical methods for model parameter estimation and recognition. Hidden Markov models
(HMMs) are currently the best compromise between mathematical tractability and ac-
ceptability from the perspective of speech science. However, from the latter perspective
many of the assumptions which the HMM formalism makes about the structure of speech
patterns are seriously in error. This constitutes a basic limitation on recogniser perfor-
mance.

To overcome this limitation, new models are needed which more faithfully characterise
important aspects of speech pattern structure and which, at the same time, are amenable
to rigorous mathematical methods for parameter estimation and classification.

From the viewpoint of speech pattern modelling, the most significant limitations of the
conventional HMM formalism are:

(i) the time-synchronous nature of the modelling, where it is assumed that the acoustic
feature vector at a particular time depends only on the state of the model at that
time and is otherwise independent of the preceeding vectors

(ii) the assumption that speech patterns are piecewise stationary with instantaneous
transitions bewteen stationary regions.

This report describes an extension of the HMM formalism which tackles the first lim-
itation by taking explicit account of the segmental nature of speech patterns. This is
seen as a step towards the development of dynamic segmental statistical models which
are able to explicitely model the dynamic behaviour of speech patterns.

An initial theory of time-asynchronous static segmental HMMs is presented, in which
sources of extra-segmental variation, such as identity of speaker or the particular choice
of acoustic target, are fixed throughout a segment rather than being allowed to vary
time-synchronously as in a conventional HMM. The most important result is that the
conventional HMM parameter estimation algorithm can be extended to this new type of
segmental HMM. The main part of the memorandum is concerned with the derivation
of the extended parameter estimation algorithm and a formal proof of its validity.
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2 Introduction

At present the most successful automatic speech recognition systems, in terms of recog-
nition accuracy, are those which use hidden Markov models (HMMs) to model speech

at the acoustic level and dynamic progra-mming based recognition algorithms which find
the best interpretation of an unknown speech pattern in terms of the output of a se-

quence of HMMs. The most recent systems, such as those developed under the DARPA
Spoken Language Systems project and at IBM and Dragon in the USA, and RSRE's
"ARMADA" system in the UK, use HMMs to model speech at the phoneme level in
order to address medium to large vocabularies and to avoid vocabulary-specific training.

This success is due to two factors. Firstly HMMs provide a formal statistical framework
which is broadly appropriate for modelling speech patterns. This single framework is
able simultaneously to accomodate the time-varying nature of speech patterns, through
the structure of the underlying Markov process, and the variable segmental structure of
these patterns through the statistical processes which are identified with the states of the
model. Secondly there exist computationally useful and rigorous mathematical methods
for automatically optimising the parameters of a set of HMMs relative to training data,
and for classifying an unknown speech pattern given a set of HMMs. These are the

Baum-Welch algorithm, which is used to adjust the parameters of a set of HMMs in
order to (locally) maximise the probability of a given set of training material conditioned
on these HMMs, and the Viterbi, or One-Pass Dynamic Programming algorithm which
computes, in a particular sense, the most probable sequence of HMMs given an unknown
speech pattern.

These two factors taken together (a broadly appropriate formalism and the existence of
rigorous mathematical methods for manipulating that formalism) constitute a powerful
tool for speech pattern processing. However from the perspective of speech science it
is clear that the assumptions which the HMM formalism imposes on the structure of
speech patterns are inappropriate in several respects.

(a) Piecewise Stationarity The HMM framework assumes that a speech pattern is
produced by a piecewise stationary process, with instantaneous transitions between
the stationary states. This is clearly at variance with the fact that speech patterns
are derived from signals produced by a continuously moving physical system - the
vocal tract.

(b) Properties of the States In a standard HMM the statistical process associ-
ated with a state is defined by a single probability density function (pdf). This
pdf typically has to accommodate several quite distinct types of variability, for

example:

- Long-term extra-segmental variations, such as speaker sex, identity of speaker,
and long-term prosodic phenomena, which are essentially fixed throughout the
duration of a segment.

- Short-term intra-segment variations which occur once the segment target has
been achieved.
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In addition, in reality the configuration of the vocal tract is not even nominally
stationary, for example in the dynamic part of a diphthong or in most consonants,
and this is another source of variablity.

A further consideration is the fact that in order for Baum-Welch parameter rees-
timation theory to apply, the class of the state output pdf is resricted to non-
parametric discrete distributions (in the case where the front-end processing in-
cludes quantisation to ensure that all observation vectors are drawn from given a
finite set), or mixtures of multivariate gaussian pdfs (see [7]). The extent to which
such pdfs are appropriate for modelling acoustic feature vectors in speech patterns
has been considered by Richter [9]

(c) The Independence Assumption It is assumed that the probability that a given
acoustic vector corresponds to a given state of the HMM depends (directly) only on
the vector ard the state, and is otherwise independent of the sequence of acoustic
vectors and states which preceed and succeed the current vector and state. Thus
the model take no account of the dynamical constraints of the physical system
which has generated a particular sequence of acoustic data.

Clearly, the problems associated with the independence assumption are exacer-
bated by the use of a single density to model all sources of variability (see (b)). For
example, in a speaker-independent system in which high-order mixture densities
are used to model inter-speaker variations, the model assumes that each acoustic

feature vector in a sequence may have been produced by a different speaker.

(d) State Duration Because of the Markov assumption, state (and hence speech
segment) duration in a HMM conforms to a geometric pdf which assigns maximum
probability to state duration 1 and successively smaller probabilities to longer
durations. This is not an appropriate model of speech segement duration.

(e) Model Topologies The basic segmental-sequential structure of the patterns cor-
responding to a particular HMM is determined by the topology of the underlying
Markov model (i.e. the number of states and the permitted transitions between
states). In most HMM-based speech recognition systems a common HMM topology
is chosen for all models. However the patterns which are to be modelled typically
exhibit a range of types of sequential strucure.

Most uf the progress which has been achieved over recent years has resulted from working
within this basic HMM framework. There has been very little work aimed at extending
the HMM formalism in ways which address the limitations listed above. One reason
for this is the realisation of the importance of the mathematical tools associated with
HMMs and an acknowledgement of the need to extend these mathematical techniques
in parallel with any extension of the basic formalism.

An example of the way in which the conventional HMM formalism can be extended is
the work on hidden semi-Markov markov models (HSMMs) reported in [10], [11] and
[6] in which the HSMM structure enables the geometric model of state duration in a
standard HMM to be replaced by something more appropriate. In a HSMM the under-
lying Markov process is replaced with a semi-Markov process in which state duration
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is explicitely modelled by state-dependent state duration pdfs. It was shown that the
standard HMM optimisation and recognition algorithms can be extended to HSMMs
with non-parametric, Poisson and Gamma state duration pdfs [6, 10]. Small vocabu-
lary speech recognition experiments were conducted which showed that HSMMs could
consistently outperform standard HMMs [3, 12].

The essential difference between HMMs and HSMMs is that HMMs are time-synchronous
in the sense that states are associated with single acoustic vectors, whereas in a HSMM
states are associated with sequences of acoustic vectors. Hence, in addition to their
utility for duration modelling, HSMMs offer a computationally useful framework for
more general modelling of speech at the segment level.

The purpose of this memorandum is to present a new HSMM based segment level
stochastic model which addresses some of the limitations of HMMs which have been
listed above, and which at the same time is computationally useful in the sense that
the existing HMM parameter estimation and classification algorithms can be extended

to this new class of model. The basis of the new model is the notion of separating the
modelling of sources of variability which apply above the segment level from that of
sources of variability which apply within a segment. Intuitively, since in the present
context segments are sub-phonemic, variations due to factors ranging from identity of
speaker down to the choice of "target realisation" of a particular sound fall into the first
category, while subsequent variations around that target fall into the second category.
It is this perspective which leads to the use of terms such as "target" in the discussions
which follow.

The organisation of the memorandum is as follows. Section 3 introduces the termi-
nology and notation of hidden Markov and semi-Markov models which is necessary for
the development of segmental hidden semi-Markov models. Section 4 presents a gen-
eral formal definition of this new type of segmental model. Section 5 introduces the
special case of gaussian segmental HSMMs. A simple example of this type of model is
compared with the corresponding conventional HSMM. The section goes on to present
a basic mathematical analysis of gaussian segmental HSMMs. In section 6 it is shown
that gaussian segmental models can be viewed as an extension of conventional variable
frame-rate analysis in which dynamic programming based variable frame rate analysis
is integrated with Markov model based processing. The relationship with HMMs with
gaussian mixture densities is explored in section 7. Section 8 presents a derivation of
Baum-Welch type reestimation formulae for segmental HSMM parameters.

3 Hidden Semi-Markov Models

3.1 Hidden Markov processes

In the standard hidden Markov model (HMM) based approach to speech pattern mod-
elling it is assumed that a sequence of observed multi-dimensional acoustic vectors,

Y 2-- Yl, 2,...', Yt,'".YT

m mmm m m mmm mm m mmmm m m mmm, m mmwm~mm •. .. . ..



corresponding to a given speech signal, is a probabilistic function of a hidden state
sequence

-T Z-I Z2, ... , vt, ... , ZT

where each z, is drawn from a finite set of states or = {ol, .. , ON}. The sequential and
durational statistics of z are determined by a transition probability matrix

A = ,N

where, ai, = Prob(zt = ojlztI = a,) is the probability of a transition from state a, to
state ori, and an initial state probability vector

Ir = [7ri~i=I,...,N

where 7ri = Prob(zl = a,). The pair M = (7r, A) define an N state Markov process.
The relationship between the observation vectors yt and the hidden states z, is defined
by a set of probability density functions {b,},=1,...,N, where

b,(o) = Prob(yg = o1xt = a,)

is the probability that the observation o is associated with state oj. The triple 7W =

(Or, A, {b,}) defines a hidden Markov process. The process is called hidden because it
is not possible to infer unambiguously the exact state sequence which gave rise to a
particular observation sequence.

3.2 Hidden semi-Markov processes

A semi-Markov process is obtained by associating a probability density function Di,
defined on the set of positive integers, with each state a, of an N-state Markov process
M = (7r, A). For d = 1, 2, 3, .. , 7V,(d) is the probability of occupying state a, for precisely
d time units. The density V, is called the state duration pdf associated with state a,,
and the Markov process M is called the underlying Markov process.

A hidden semi-Markov process is a probabilistic function of a semi-Markov process.
More precisely, an N state hidden semi-Markov model (HSMM), or Variable Duration
HMM [6], is a 4-tuple S = (7r, A, {VD,}, {b,}) where:

"* M = (7r, A) is an N-state Markov model

"• V, ...,VN is a set of N state duration pdfs, Vi : N --+ [0,1)

"* b/, ... , bN is a set of N state output pdfs, bi : R d _- [0,1]

where N and Rd denote the positive integers and real d dimensional space respectively.

Intuitively one can visualise a hidden semi-Markov process as follows. At some time
t = 1 the process enters state zx = a,, chosen randomly according to the initial state
probability vector r. A duration d, is chosen randomly according to the state duration
pdf V ,, and a sequence Y1, ... , I , of d, acoustic vectors is generated randomly and inde-
pendently according to the state output pdf bi. The process then moves from state ai
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to state ao according to the state transition probability matrix A. In general, at time
t = di + d2 + ... + d.-I + 1 the process enters state z,, = oa. As in the case of the first
state, a duration d4 is chosen randomly accordiag to the state duration pdf Vi, and a
sequence Yt, ... ,Yt+D.-1 of d4 acoustic vectors is generated randomly and independently
according to the state output pdf bi.

It is straightforward to show the principle of dynamic programming can be extended
from Markov to semi-Markov processes. Consequently the standard dynamic program-
ming based recognition algorithms can be extended from HMMs to HSMMs. In addition
it has been demonstrated that Baum's theorem (and hence the Baum-Welch parameter
estimation algorithm) can be extended to HSMMs with discrete, Poisson or Gamma
state duration pdfs ([10, 6]). In all cases the need to explicitely consider times t - b
(6 = 1,2,..., d,,) during HSMM based computations leads to an increase in computa-
tional load relative to HMMs, however HSMMs still provide a computationally useful
formalism.

3.3 Advantages of Hidden Semi-Markov Models

In the past, HSMMs have primarily been used to remedy the limitations of HMMs with
respect to speech segment duration modelling, and have not been used to address any
of the other limitations of HMMs which are listed in the introduction. Consequently,
because the improvements in recognition accuracy which result from better duration
modelling are generally relatively modest and the increase in computational load is
relatively high, there has been little recent work in this area. The objective of this
memorandum is to show that, leaving the duration modelling capabilities of HSMMs
aside, the segment based formalism provided by HSMMs can be exploited to address
some of the other limitations of HMMs.

4 Segmental Hidden Markov Models

This section proposes a segmental model of speech which is an extension of the conven-
tional HSMM described above. The model is motivated by the need to explicitely deal
separately with the different types of variability which are accomodated in the state
output pdf of a conventional HMM or HSMM, thereby making the independence as-
sumption more realistic. Hence the new model explicitely addresses points (b) and (d)
of the introduction and implicitely addresses point (c).

In a conventional HSMM the stochastic process associated with state O'i is defined by a
state output pdf

b : Rn ,[0, 1].

In the associated model of speech pattern production, at each time t an observation
vector y, is produced randomly according to the pdf b1. The vector yj clearly depends on
the state a, but is otherwise independent of the observations y, ...,yt-. which preceded
it. However, it has already been noted that the pdf b, typically accomodates several

8



different types of variability, including variations in the target for a given sound (both
intra-speaker and inter-speaker) and natural variations which occur once the target has
been chosen. Because all of these types of variablity are modelled by a single pdf and
the sequence of observation vectors are generated independently (according to that pdf)
there is nothing to prevent successive observation vectors corresponding to quite different
sets of extra-segmental factors, such as different speakers.

The proposed model overcomes this problem by using separate processes to model extra-
state and intra-state variations.

4.1 Definition of the model

In the state model described below, extra-state variations associated with state a, are
modelled by a pdf bk called the state target pdf. Arrival at state a, causes a single output
to be generated by the process associated with this pdf. This output, which will be

called a target is a pdf v which can be regarded as modelling within-state variability
once all sources of extra-state variability have been fixed. Thus on entering state aj, a
state duration d is chosen randomly according to the state duration pdf V, and a target
v is chosen randomly according to the pdf b,. A sequence of d observation vectors is then
produced, with each individual observation being generated randomly and independently
of its successors according to the pdf v.

More formally, the stochastic process associated with state ai is governed by a probability
density function

bi : p'" __ [0, 1]

where 7p" denotes a subset of the set of probability density functions defined on n-
dimensional space R".

In other words, in the new type of model a target is defined to be a pdf v which can be
thought of as modelling variations in the acoustic pattern which occur once the speaker
and all other sources of extra-state variability have been selected. This target is fixed
throughout a particular state occupancy. The state target pdf bi specifies the probability
of any particular target given state a,.

Hence although the sequence of observation vectors generated by such a state model
are still independent samples from the same distribution v, in this case the distribution
v only models variations which occur given a fixed acoustic target. All of the vectors
which are generated during a particular state occupancy are constrained to correspond
to the same target.

Therefore, formally, an N-state segmental HSMM is a 5-tuple M = (7r, A, {V,}, 7r", {b,})
where

"* (7r,A,{V•}) (i = 1,..,N) is an N-state semi-Markov model

"* 'Pn is a set of target pdfs defined on n-dinensional space R"

9



b, :P• --# [0, 1] is a state target pdf defined on 'P"

In the above notation, a state of a segmental HSMM is a triple

or = (-P-, b,V)

Given a sequence of observations

Y -= Y27 ..., Yt, ... , YT

the joint probability of the sequence y and a particular target pdf v : R" -- [0, 1] given
a is therefore given by:

T
P,(y, v) = 7V(T)b(v) rI v(yt) (1)

t=2

5 Gaussian Segmental HSMMs

Suppose that a target is defined to be any gaussian pdf defined on n-dimensional space
R' with fixed variance r. Given that the variance is fixed, a target is defined uniquely
by its mean and hence in this case P' is equal to R". For a given state Oi let the state
target pdf bi be a gaussian pdf Ar(,•,) defined on P" = Rd with mean Ai and variance

"Y-i.

5.1 A simple example

To illustrate this, consider the simple case of a 1-state 1-dimensional model with state
mean ul = 0 and variance -yi = 6, and with fixed target variance r- = 0.5. In addition,
suppose that state duration follows a Poisson distribution with mean state duration
b, = 300,. Figure 1 shows a sequence of 1100 random observations generated by such a
process in the manner described in section 4.1. The figure clearly shows 3 separate state
occupancies. At the start of each occupancy a target value and a duration are chosen
and the appropriate number of observations are generated, at random, from a relatively
tight pdf centered about the target.

Now consider the result of trying to model this as a conventional 1-state hidden semi-
Markov process. The latter assumes that all of the observations are generated randomly
and independently by a single gaussian process. It is straightforward to show that the
mean of this process is equal to 0, the mean of the state target pdf of the segmental
process, and its variance is 0.6, the sum of the variances of the state target pdf and
individual target pdfs of the segmental process. Figure 2 shows a sequence of 1100
observations from such a process given the correct Poisson duration statistics. State
transitions occur at the same times as in figure 1, however all of the structure apparent
in figure 1 which shows the separate state occupancies has been lost.

10
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5.2 Mathematical analysis of Gaussian Segmental HMMs

The purpose of this section is to present the basic equations which are necessary for
the study of gaussian segmental HSMMs. In order to focus attention onto those aspects
which are relevant to the segmental nature of the models, three simplifying assumptions
have been made. First, the precise form of the state duration pdf associated with a
particular state aj is not specified. This pdf is simply denoted by P,, and it is assumed
that it is independent of the parameters of the segment model, namely 14, -yi and ri
(i = 1, ... , N). Second it is assumed that all observations are 1-dimensional. The latter
assumption is also unnecessary, and it will be seen that the arguments can be extended
to multi- dimensional observations, but is made for the reasons given above. The fi-
nal simplifying assumption is that the underlying Markov model is strictly left-right.
Again this is not necessary but it will significantly simplify notation, particularly in the
derivation of the parameter reestimation formulae in section 8.

5.2.1 Analysis of the State Model

In the above notation, a state a of a gaussian segmental HSMM is a triple

where P is the set of pdfs defined on R of the form A((.,4) (z E R), and V denotes an
appropriate state duration pdf. Given a sequence of observations

Y/ = Yl, ..., Yo, ... iYT)

the joint probability of the observation sequence y and a particular target' c given state
a is given by

T

P.,(y, c) = V(T)A$,I,)(c) fI ( (2)
t=1

and the probabilty of the sequence y, given ar is

()= ( P.(y, c) (3)

An alternative to the "full probability" criterion of equation (3), which is more am-
menable to analysis, is to consider the joint probability P, (y, Z), where 6 is the value of
the target c which maximises P, (y, c). Define

Jk(y) = mazcP.(Vc) (4)

= argmaz.P4 ,(y,c) (5)

Claim

'Here the term "target" is being used to refer either to the gaussian pdf A((,,,) with mean c and
fixed variance r or the mean value c

12



Let j, y, r and y be as above, then

A = + YL t, I6
C r + T(6)

Proof

Since the logarithm function is monotonic it is enough to show that i maximises log(P, (y, c)).
From equation (2),

lo9(P.(3,c)) = 1o9(V(T)) + log(.A(,,,)(c))
T

+ • lo9(I ,.)(3,)) (7)
t 2

Therefore,

-log(P,(Y' c)) =-logV(T)

+-5cog(Ar.,.,)(c))

T a+ E Flog(Ar.(y)
t=1 

c,)y)

t (_-c) T (c- y,)2-y27 = T

Setting the right-band side of equation (8) to zero, multiplying through by -yr, and
solving for c gives the required result. To see that (6) defines a maximum, note that
from (8):

i2 (r + (9y)
-- lOg(P, (y, c)) = "77" < 0 (9)

because - and r are both positive.

Equation (6) has interesting properties. The expression for 6 is a linear combination of p,
the expected output of state a and the sum TL yt of the observations. If the variance r
of the target is large, so that the observations are not expected to be tightly constrained
by the target process, then ý is biased towards the state mean u. However, if the state
variance -y is large and i is small then 6 is biased towards the actual observations.

5.2.2 Analysis of Multi-State Models

Now consider an N state segmental HMM M, where the ith state ar of M is defined by
a, = ( .)•,,,,

To simplify mathematical notation in what follows it will be assumed that the underlying
Markov process for M is strictly left-right, in the sense that if t > a, zx = aj and z. = o,

13



then j _> i. This assumption is not necessary, but it enables a state sequence z to be
written in the form

x = di 0 all, ... , I d 0 ai, ... , dN 0 0aN

where di ® oi denotes duration d, in state ai. Without this assumption it is necessary
to introduce an extra level of indirection, to map the rnth state visited in the sequence
z onto the correct 0oi and to account for multiple occurances of states in the sequence z.
This is straightforward, but the additional notation which is required obscures the basic
simplicity of the ideas which foillow.

The joint probability P(y, xI M) of the observation sequence y and the state sequence z
given the model M is given by

N

P(y, JM)= 'if ,iP(yi,+,) (10)
i-=

where yto = yeI o+a, ... , I, and ti is the largest value oft for which zt " 0, (i > 1), to = 0.

The probability of y given the model M is then given by:

fly IM) E P (Y,X IM) (1
z

By analogy, define
N

P'y, Il ) = I"( )(12)

P(i,,M) = (y, zIM) (13)
N

Hence P(y, xzIM) is similar to the joint probability P(y,z IM) except that in the com-
putation of 1(y, z .M) the evaluation of the probability of a particular subsequence of y
given a state a, is based on the optimal target ý. Note that since Z depends on the state
sequence z and the state a0, it is more correct to write

is,, + tft,_ +1 Yt+i '(14)
czi = + (d14)

The analysis which follows, and in particular the derivation of reestimation formulae in
section 8, will focus on the quantities P(y,zlM) and P5(ylM) rather than P(y,zjlM)
and P(ylM)

6 Relationship with Variable Frame Rate Analysis

In this section it will be shown that the segmental HMM based analysis proposed in this
memorandum can be regarded as an extension and intergration of conventional Variable
Frame Rate (VFR) analysis and hidden Markov modelling
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6.1 Variable Rate Analysis

Variable frame rate (VFR) analysis is a method for data-rate reduction which has been
shown to give improved performance over fixed frame rate analysis for automatic speech
recognition [8]. In its simplest form VFR is used to remove vectors from an observation
sequence. A distance is computed between the current observation vector and the most
recently retained vector, and the current vector is discarded if this distance falls below a
threshold T. When a new observation vector causes the distance to exceed the threshold,
the new vector is kept and becomes the most recently retained vector. VFR analysis
replaces sequences of similar vectors with a single vector, and hence reduces the amount
of computation required for recognition.

What is interesting is that VFR analysis can also improve recognition accuracy [8].
There are a number of possible explanations for this:

"* by discarding vectors from relatively stationary regions of the speech pattern, VFR
focusses the recognition process onto the dynamic regions, which are important for
classification

" vectors in the relatively stationary regions of speech patterns are highly correlated,
contrary to the assumption of independence which is part of the HMM formalism.
Discarding vectors in these regions results in observation sequences which are more
consistent with the formalism

" if a count of the number of frames which each retained vector replaces is appended
to that vector, then some implicit duration modelling is incorporated into the
recognition process

6.2 Improvements to the basic VFR algorithm

The basic VFR algorithm described above can be improved in a number of ways:

6.2.1 Rather than replacing a sequence of acoustic vectors y., ..., j t with y., the first
vector in the sequence, it should replaced with some form of average y. taken over
the sequence.

6.2.2 For a finite sequence y1 = ly,-...,y" the "left-right" threshold based segmentation
method used in the basic VFR algorithm should be replaced with a "global" dy-
namic programming based segmentation algorithm such as that described in [4].
The dynamic programming based method does not rely on a threshold. It is used to
partition the sequence y into a sequence of M subsequences y3, . t., s4:- "' ... ,•

(1 _5 t1 _ ... <tM = T) such that some criterion

M
Dist(ti,...,ti,... tM) = D(y:_,+,) (15)
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is minimised. The quantity D(y3 ,%_+2 is typically a distortion measure on the
sequence y'_,1+, for example the sum of euclidean distances between vectors in
the sequence and the sequence mean.

6.2.3 In the context of Markov model based speech pattern processing it is clearly sub-
optimal to segment the sequence of acoustic observation vectors and discard infor-
mation during VFR analysis, and then to perform a second state-level segmenta-
tion. The segmentation of the observation sequence during VFR analysis should
be integrated with the state-level segmentation performed in the model based anal-
ysis.

6.3 Interpretation of VFR analysis in terms of segmental
HMMs

It will be shown that extending the basic VFR analysis algorithm in the ways de-
scribed above leads naturally to a segmental HMM based analysis. Suppose that M =
(r, A,{b,}) is a HMM, with b, = .N,,), and that y = Y1 ,...,iti,...,YT is a sequence of
acoustic vectors in Rd. In a dynamic programming based VFR scheme of the type al-
luded to in 6.2.2 above, dynamic programming is used to find a partition of the sequence
yinto M subsequences y4' ,... I such that

MDst,.. =m Dy (16)
i-=

is minimised.

Taking account of (6.2.1), following VFR analysis the sequence y would be represented
by the sequence

- t- -t' -tM9t = 91 , ",t,_1÷ ,",21 _÷

where -Y'"'1 denotes some form of average over the sequence 34",.

During subsequent HMM based processing, dynamic programming is used again to find
a state sequence z = z1 , ... ,ZM relative to the HMM M, such that the probability

M
P(.,HzI7t) - -I a8,,..,Vz,(d4)b 3.(-,+ 1 ) (17)

i=2

is maximised. Here V., is a state dependent duration pdf which is applied to the VFR
count di.

The goal of 6.2.3 is that ideally the two equations (16) and (17) should be optimised si-
multaneously rather than separately. To achieve this it is necessary to make assumptions
about the form of the distortion measure D. Suppose that

1i

= yt: DEuc(yt,§,+2) (18)
t=ti +1
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where DrUC denotes the squared euclidean metric. Then, since

DEUc(Y,,j_,+1 ) = -K 1log(Af(,, +Il 1)(y,) + K 2  (19)

where K1 and K2 are constants, minimising equation (16) is equivalent to maximising
the quantity

M 9i)=H ] ,/j -r~ti (0

P(il.t,'.t'"tM) = I II (y•_,+,1)(y,) (20)
1=1 t=t.i-+1

Equations (17) and (20) can now be combined to give an evaluation criterion for a VFR
analysis scheme which satisfies 6.2.1, 6.2.2 and 6.2.3:

M 9i

P(9 a,,..,,V 8 ,(4)b.,(s4:,÷i) H 1"7ai ) (21)

But equation (21) has precisely the same form as equation (12), with ri = 1, for all i,
and

-_,= , (22)

In other words, replacing the basic VFR analysis procedure described in section 6.1
with the obvious dynamic programming based method and then integrating this with
the higher-level Markov model based processing leads naturally to the type of gaussian
segmental HMM based analysis which is proposed in this memorandum. In this sense
segmental HMMs can be regarded as a natural extension and integration of VFR analysis
and HMM-based analysis.

7 Relationship with multi-modal gaussian mixture
densities

One of the classes of state output pdf which is frequently used in conventional hidden
Markov modelling is the class of gaussian mixture densities. In such a system the state
output pdf b, associated with the ith state has the form

J
b,(o) = wjA(•.,,I)(o) (23)

j=2

for any observation o, where wj = 1. There is also a continuous analogue of (23)
of the form

b,(o) = fw(j).A1,,,.,,)(o)dj (24)

where fj w(j)dj = I Parameter reestimation formulae for models based on (23) and (24)
have been established in [7] and [5], and in [7] respectively.

Gaussian mixture state models are used to compensate for the fact that in reality the set
of observations associated with a particular state will not generally be consistent with a
single gaussian process. This is particularly true in cases where the models in question

17



are used to characterise speech from a number of speakers. Thus, gaussian mixtures
are typically used to model broad sources of extra-segmental variablity and hence, from
the viewpoint of this memorandum, they exacerbate the problems associated with the
independence assumption within a state.

The segment model proposed here is clearly related to (24), however in the new type
of model a single component of the continuous mixture is chosen on entering a state
and all observations emitted during a particular state occupancy are drawn from that
component. In the case of (24) a different component can be used to explain each
individual observation. Thus, the new type of model can be regarded as a continuous
gaussian mixture in which all observations corresponding to a particular state occupancy
are constrained to come from the process associated with a single component of that
mixture.

8 Parameter Re-estimation for Segmental HMMs

The analysis presented in this section is concerned with the derivation of reestimation
formulae for the parameters of the state segment models, namely ji, 7-y and ri. The
reestimation formulae for the initial state probabilities 7ri and state transition probabil-
ities aij, are the same as those presented in [101 and are not re-derived here. Similarly,
no precise form for the state duration pdfs is assumed other than that they should be
independent of the parameters of the state segment models. Reestimation formulae for
non-parameteric discrete, poisson and gamma state duration pdfs are given in [10, 6].

As in section 5.2, the derivations presented below are simplified by assuming that all
observation vectors yt are 1-dimensional and that the underlying Markov model is strictly
left-right. Again it is emphasised that these assumptions are not necessary but are made
in order to focus attention onto those aspects of the mathematics which are directly
relevant to the segmental nature of the models and to reduce notational complexity.

The analysis focuses on the quantity P(yIM). Hence, given a model M, the goal of
reestimation is to derive a new model M such that

P(,Im) _Ž P(yiM) (25)

As for conventional HMMs and HSMMs 12, 7] it is convenient at this point to introduce
a function Q(•M,.) of M, called the auxiliary function, defined by,

(MM) = ZP(3, .XIM)logP(Y,,zIji) (26)

The auxiliary function has the following property

Claim

If Q(M,AM) > (2(M, M) then Pc(y XI) > P(3/IM)

Proof
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The proof is the same as in [2, 7]

It follows that in order to find a model .AM which satisfies equation (25) it is sufficient
to find MA? such that (.(M,,) > QA(M, M). In particular it is sufficient to find a
model M which maximises Q.(M, M). This maximum is obtained by setting the partial
derivatives of Q(M, .M) with respect to the parameters of M. equal to zero and solving
the resulting equations.

8.1 Derivation of the Reestimations Formulae

Claim

Let y be a sequence of observation vectors and let M be a gaussian segmental HMM
as in section 5.2.2. Let M be the gaussian segmental HMM with parameters defined as
follows,

e = E=s,T (y,zIM) t.,_+lY, (27)

•, = ~Ees, P( 31,zIM)( d -•,) (8
E Es, P(y , I- (28

E =Esi P(YXI.M)E ,_,+i( c=, - ,)2 (29)

Ex-ES, P(!dXIM)d
E.Es, P(y, x .M)di

where Si = t= o, for some t} and

t. 4'r- + m,' /t/
= _ t=.,_1 3 (30)

c=,• = + d•,,

Then provided that

(i) ji > fj for all i, and

(ii) the sequence y = Y1, ... , /YT is not constant

P(YIM) 2! P(3 1M).

Proof

The arguments follow those in [2] and [7].

From the previous discussion it is sufficient to show that the model M defined above
maximises d(M,. 1) as a function of M . The proof is divided into three stages:

e M is a critical point of Q(M,XI)

e Q(M,M•) is strictly concave in At

* Q(M,.A~) -. -oo as M approaches the boundary of the parameter space
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The first of these stages is presented below, since it involves the derivation of the reesti-

mation formulae. The remaining two assertions are demonstrated in appendices A and

B.

From equation (30),

8.~JIi TI(31)

8~g~ _ j(d~ji - 0) (32)

Ci MO- 4 )(33)

where K3,j = (f, + dirt,) and 0 Etý=tl+ 31t

From equation (12),
N

logP5(y, zjM) I o9(fl aj-..,j,A,(yt..'+) (34)

N

- (lo9(aj..1,j) + IogP,,,(yt~ ,+,)) (35)
i=1

And from (2),

I~P'Y'-+)= log)'.,,(y:2i-+I'o (36)

= logVi(d,) + IogAr(5.,.)(C) + L logAr(.5,,.)(yf) (37)
t=tiI +1

Derivation of jij

From equations (26), (35) and (37),

8-,. IM 800y (38)

= P(3/,ZIM)F, -iogp,,(34'. 1 +I) (39)

- P(3,,zI )9A M) 'ogP,,(Y4..,+2) (40)

RESi

tIi

+ ý__7-oqAr~~9 )y) (41)

Now, using (31)

O _ -(42)
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and,

8 _ - 2Zi) (43)

- K.,j

Therefore,

a8.-Z~ - Pi Y - 40" -'- -Q(M)M) 5 I ) (44)
ges, t=t.i_+1

Setting the partial derivative to zero, to obtain a critical point, and multiplying through
by K.,, gives,

t.

P(y, zTM)(d,(c',, - ji,) + Z (Yt- a.,)) (45)
CES,

ti

P(yxIM)( j t-dia2i) (46)
rES,

It follows that,

ZXES. P1(y, ,M) ,•'a = --s ~v=•d (47)

which is the required result.

Derivation of fj

As in the derivation of A,

a-Q(MM) = Z (y, zIM)(-alogA(ij.,-(,,)1 j
zES,

+ Z .logi2.,.,)(yO)) (48)
9=t/- +1

But, using (32),
a (T, - 2. j)(djA, - 0)•iilo••.i( .. C)c •. (49)

Also, again using (32),

8-1 1 2-f,ýj(=,, - yt)(d,T, - 0) 2
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from which it follows that,

S , di 1 2;r-jj.'.(") - O)(dis, - 0)(t)

=t.t-I + 2f 27i2-- -FiYX

* (51)

Therefore at a critical point, combining equations (48), (49) and (51),

0 -

0 =-Q(M.,M)

OP(Y,,zIM ) ("'F - K..,)(d.ri, - 0)

RES.

di (21 9,(d,•=,, - o)(dpi, - 0)

ti

- E' • •,- Y,,)2)) (52)

Consider the term in square brackets. Multiplying by -1 and rearanging gives,
(djTddi 1 0)ti

o{(,,_ .,) + -. (d,.z,,) - 0)} + C 2 _Z Y,)2

Multiplying by ,i and expanding the terms in curly brackets gives

O_0) - ) di _ I -1 - (54)
(d•..•_... 1 -f•iTi + !ic:',.,i+ djC2*i,jj-9,wO} + E (I• _ (•= t-/)2 54

'2 z "
,z' 2 ;r =t._l+,

Now consider the term in curly brackets. This can be rewritten as,

-,f,. - ý,O + C.,j(f, + dj,) = -(;ri, + j,0) + (;r,# + ,o0)

-0

from the definition of .-

Therefore equation (52) reduces to

o = 2 P(czI.,M)[- 2y., (,,"-- ,)2] (55)

From which it follows that,

& = ES, P(Y,.M) -=,,_+1 ( 8.,' , (56)

E.s, P(y,.IM)d,
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Derivation of ;yj

-Q(M,.AT) = 15(sxlI)( .og ,,(z •.., )
iiizES.Vg

+ F l logA/j(.,le)(yt)) (57)

Using (33),

j) 1 1 2'',(fi?(j - -.,) -(p , )=) (58)

'61i CC ~21' 2j5'K', (8

Also, again using (33),

.loggAI.,,,,)(yt) =-•(.,, - Y,)(O - rid,) (59)

Therefore,

_ -logA)( ) - O idt) . -0) (60)

Therefore at a critical point, combining equations (57), (58) and (60),

0 = a-Q(M',M)
= : P(Y,XI.M)[-•

ZES, 2ý.

1 - 25',r,(Fl, - )( - Td,)
.'. - ((, - .,

(0 - Tidi)(di., - 0)(K,, (61)

Consider the term in square brackets. Multiplying this term by -25' and then rearrang-
ing gives,

2(0 - frd. )
+ K2,0 2 Ad ") + ;ýjd )- (fJti +' 'O)}

7'

-1C1 - 2 (62)

because, from the definition of =,,i, the term in curly brackets is equal to 0.
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Therefore equation (57) reduces to,

0 = I P(j, zIM)[1 -- ( _ )2 (63)
ZES, IN

It follows that

=, r Es, EP(Y, zl M)(p, - -,)2 (64)

=-Es. P(yzIM)

This concludes the derivation of the reestimation formulae for parameters Aj, 7-i and y,.

8.2 Remarks on the derivation of the reestimation formulae

As with the standard reestimation formula for the variance of a gaussian state in a
conventional HMM, the reestimated value of the state mean /2 appears on the right
hand side of equation (28). However, because ",j is a function of 7, the term j appears
on both sides of equation (28). For the purposes of implementation it is natural to use
the old values p and -y on the right-hand side of equation (28). The implications of this
will be investigated experimentally. The analogous remarks hold for the quantity r in
equation (29).

The assumptions

(i) j. > f, for all i, and

(ii) the sequence y = yl,...,Y7 is not constant

are sufficient to ensure that the critical point of the auxilliary function is a unique
maximum. It is noted in section B.2 that the way in which these assumptions are used
in the proof suggests that they may also be necessary.

9 Conclusions

This memorandum has presented a new segmental HMM which addresses some of the
limitations of conventional HMMs in the context of speech pattern modelling. The main
features of the new model are:

* The use of an underlying semi-Markov process to model speech patterns at the
segment level, and

e A segment model in which separate processes are used to model extra- segment
and intra-segment variability.
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It has been shown that the model is computationally useful to the extent that it admits
extensions of the conventional HMM classification and parameter estimation algorithms.

It has been shown that segmental HMMs can be regarded as an extension and integration
of conventional variable frame rate analysis and hidden Markov modelling. In addition,
the relationship between gaussian segmental HMMs and continuous gaussian mixture
HMMs has been explored.

Segmental HMMs ensure that extra-segmental factors, such as choice of acoustic target
or identity of speaker, are fixed throughout a segment rather than being allowed to
vary in synchrony with the speech pattern feature vectors as in a conventional HMM.
At present, they do not ensure that factors such as identity of speaker are preserved
between segments, nor do they model the dynamic nature of speech patterns. However,
it is hoped that by identifying the target pdfs more closely with parameters which
reflect these factors, for example articulatory parameters, the type of segmental HMMs
described here can be extended to address these issues in a similar manner to that
described in [1]
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A Proof of the concavity of Q(M, M)

Claim In the notation of section 8, if ji > -r, for all i, then Q(M,.A14) is strictly concave
in M.

Proof

It is sufficient to show that 822 Q(M, M) < 0 
(65)

for A = , j, and fi, for all i.

Claim: < 0

This is straightforward. Differentiating equation (44) gives,

82 di ',,-i
ýýAQ1ý(MM) = E (66)

RES. Kj KC,~ 1

< 0

since d,, j,, f, and K2 ,i are all strictly positive.

Claim: 2(M <

From the derivation of equation (63),

__ -M) = -1 P(y,-IM)[-(1 - C(Z, - .)2)] (67)
Kii WES. " -

Therefore, differentiating again with respect to +,

b 2 1 5( y)IA( 2 2 j f , ( j - ( o - d , ip ) 7 y + 2 ( T i , - C- = , , ) 2)

xESv 5,K

(68)
Now, it follows from the definition of s.,j that

(0- -L ,) (69)

Therefore, from equation (68),
L92 -L2

- , = -• P(s,,zIM)i((1,- .)(2 - ) )- ) ,) (70)

2jj3 5.,j

But, since ,% > 7,, it follows that j < 1. Hence

82 ((A, ,)2- Q(M•,) < -, i2(y, zIM)((••((,i-,'y) C8 /y) (71)

=0 (72)
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from the definition of y, (equation (28)).

Claim: 6 Q(.M,M) < 0

Using the derivation of equation (55), it is seen that

-Q(MA71) = -j-~)2] (3ý(MQ)= EP(Y.T1)1r 2 2 _jCc(3

It follows that,

,L2,. 1 1d
94ESi

+ (-I- E (cc - y)(dfji - 0) - • (4,,- yt) 2))] (74)
3,, ( =t,= % +IT t=-, =,, +I

From the definition of cm,,

, -0o= K ,- 0, (75)

and

n (C, - YO) = (F - •=,i) (76)
t=t,- 1 +1 'Yi

Substituting the last two results into equation (74) gives

02. 1 di, r )~-Q(, 1)= jP(3/,zIM)l F2(_ + Cc-

CES,

1 t

, - ( , - ,,fl] (77)

t=4, +1

< E P(Y,Xl•)[ 1(ý +÷ 1 (jj, - .,,)2

L (Z ' (•.- Yt) (78)
Ti t--ti-t +l

I2 2V , 1! (79)
:F,2 I- , + ~

< 0 (80)

where V = E.ES, P(y, zM)d, and . = E.,s, P(y, zxIM) Inequality (78) holds because
it is assumed that ji > '7. Equation (79) follows from the definitions of j, (28) and f,
(29). The final inequality follows from the fact that V > 2.
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B Q(MI, M)-- -00 as M approaches the boundary

of the parameter space

This section uses the notation of the main body of the memorandum. The assumptions

that j, > F, and that the observation sequence y = YI, .. YT is not constant are both

used in the proof.

B.1 Proof

Focussing again on the parameters Aj, ji and f,, the cases which must be considered are:

* - ±00

0 ', - 0 or 4, --* o

From equation (26),

Q(MdM) = P(, IM)l)ogP(y, ZIM)
3

N

= F P(Y, zIM) _(log(a,-1,) + log(V,(d,))
Si=

+ log A/( 1.,,.,)(c.,j) + logA/'(.,.,÷,)(yt)) (81)
t=t,-i '+1

Hence it is sufficient to show that

1 1, .,)2

o= -.- log(27r) - -log(,) - 2(82)
2 2 24.

and

= +1 "=,_+ (- og(27r) - lO() )2) (

tend to -oo in all of the cases listed above.

Case 1: j - ±+oo

This is straightforward. To see that (82) tends to -cc note that

( :, - , ) 2 ( A, d . _ O ) 2.%,
(Ai - -- + d .Q )2 (84)

2-, 2(f, + d.,)2
--+ oo asM, --+ ±00 (85)
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and, in the case of equation (83),
(•,i - _,) (ji, + 01, - y,(f, + 4,1,)2 )=.iY (86)

2f, 2(fi + drf,)2f,

--- oo as . -- +oo (87)

Hence, since all other terms in (82) and (83) are independent of Ai, Q(M,M) - -cc
as Ai --+ :oo

Case 2.1: 9• -' 0

As above

(pA - _..,,)2 (L,d, - _0)2j, (88)

2xii 2(1, + d,5,)2

> (,d,- _O)2 (89)

2(d, + 1)2 j,
I

because xi > fi. Hence logAt (A,,,) --+ -oo as j, -- 0, because oo -- cc faster than

log(4,) --+ -oo as ji -* 0. Similarly, from (86),

2- u) _ (f'l,p + 0 9y, - y,(f. + dj,) 2 ) (90)

2fj ~~2 (f + d-jj)lf (0

> (p,, + 5', - y,(f, + d,5,)) 2  (91)
2(d, + 1)2ý,3

-. as 9% -+ 0 (92)

Hence Q(M,M) --+ -oo as i, -- 0

Case 2.2: 7, -- oo

From equation (84),

(p. - 2=,) ' (pdi, - 0)25,
2ry, 2(Tj + d.,9,)2

"- 0as5 "0-oc (93)

Therefore

-- -co as 9i -- oo (94)

Also, since

Flt + 01,
tj + d*'

0
-. as 5' --- oo (95)

it follows that LogA,(., 9 ,,0(yt) is bounded as 5', -- o•.

Hence O(M,.M) --. -oo as 9', --4 co, as required.
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Case 3.1: , --. 0

Since
0

c{=j) z as Tf --. 0 (96)

it follows that logA('(1,0•(,j) is bounded as fi -" 0. This leaves the term logA((..ov,)(yt).

The relevant contribution of this factor to Q(M, MA1) consists of weighted sums of the
terms -log(f,) and Y"..'_•) But

y,)' - -YO d. as ri--+ 0 (97)00

Hence, provided that . # yt for some t, Q(M,A1) will tend to -oo as fi --4 0 This
acounts for the assumption that the observation sequence V = Yl, ..., )YT is not constant.

Case 3.2: -f --- oo

As ri --+ oo, ýj --+ oo, since ýj > t, by assumption. The argument for case 2.2 above
then shows that logA(',1,0,)(1",j) -- -oo as f- -- oo

Finally,

- t)2 ( fi + Oy, -_ !,('f. + diai)) 2

2"fi 2-i(f + diti)2 8

- 0 as f, --# oo (99)

because ry, > f,. Hence logA/(N,.),,.9) - -oo as ? - oo. It follows that Q(M, M) --+ -oo
as fi -+ oo as claimed.

B.2 Remarks

The above arguments suggest that the condition yj, > fj may be necessary as well as
sufficient. In case 2.1, if it is not the case that f -"* 0 as ;'j --. 0, then it is possible for the
terms in eqautions (88) and (90) to be b -unded above as f, --+ 0. In this case the term
-log(;/i) will dominate and Q(M,AM) will tend to infinity as ai -+ 0. Consequently the
point identified by the reestimation formulae will no longer necessarily be a maximum
of the auxiliary function.
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